Дано <span>cos C= 1/3. Тогда sin C = √(1-</span><span>cos² C</span>) = √(1-1/9) = √(8/9) =(2*√2)/3.
Боковая сторона а = b / (2*<span>cos C) = 3*√2 *3 / 2 = (9*√2) / 2.
Высота на основание Н = a*sin C = </span><span>(9*√2)*2*√2) (2</span>*3) = 6.
Из условия S = b*H/2 = a*h/2 находим h = b*H/a =(3√2*6*2) /9√2 = 4.
Здесь h - высота СК.
Площадь бп конуса pi*r*l, где r- радиус основания, l-длина образующей. В соответствии с условием r=sin(a/2)*l. Остается найти l. Используя соотношения для площади прямоугольного треугольника, приходим к выводу, что l=2a/sina, а площадь боковой поверхности pi*(4a^2/sin(a)^2)*sin(a/2)
Пусть одна сторона x, а вторая x-4. (2x - т.к. равнобедренный треугольник) Составим уравнение:
2x+x-4=14
3x=18
x=6
2 стороны равны 6 см. Третья сторона равна 6-4=2.
Ответ: 6,6,2
Нет так как 110 +60 = 170 ,а по признаку нужно 180