по теорема пифагора: с^2=а^2+b^2
с^2=6^2+8^2
с^2=36+64
с^2=100
с=10
AD= половине АС
АС=10
AD=5
Рассмотрим треуг-ки AMD и СКВ. Они равны по двум сторонам и углу между ними:
AM = CK, DM = BK по условию
Углы М и К равны как противоположные углы параллелограмма MNKL. Значит,
AD=BC.
Рассмотрим треуг-ки ANB и CLD. Они также равны по двум сторонам и углу между ними:
NB=NK-BK, но ВК=MD по условию, а NK=ML как противоположные стороны параллелограмма MNKL. Тогда можно записать:
NB=NK-BK=ML-MD
Выразим, чему равен DL:
DL=ML-MD
Значит, из выражений NB=ML-MD и DL=ML-MD следует, что NB=DL.
AN=MN-АМ, но MN=LK как противоположные стороны параллелограмма MNKL, а АМ=СК по условию. Тогда запишем:
AN=MN-АМ=LK-СК
СL=LK-CK
Из выражений AN=LK-СК и СL=LK-CK следует, что AN=CL.
Углы N и L равны как противоположные углы параллелограмма MNKL. Значит, для равных треуг-ов ANB и CLD справедливо, что АВ=CD.
<span>Таким образом, в четырехугольнике ABCD противоположные стороны попарно равны. Это - один из признаков параллелограмма.</span>
2x+3y-12=0
абсцисса точки пересечения прямой с осью Ох:
у=0, 2x+3*0-12=0. x=6. A(6;0)
ордината точки пересечения прямой с осью Оу:
x=0, 2*0+3y-12=0. y=4 B(0;4)
координаты точки O - середины отрезка АВ - центра окружности:
O(3;2)
длина АВ:
d=2√13, R=√13
уравнение окружности:
(x-3)²+(y-2)²=(√13)²
(x-3)²+(y-2)²=13
Если прямые которые пересекают стороны угла отсекают на сторонах угла пропорцианальные отрезки то такие прямые параллельны. МН параллельна ВС. Треугольники АВС и АМн подобны один угол А общий , угол АМН=углуВ как соответствующие (по двум углам)