1) sin ABC = (5√3)/10 = √3/2.
ABC = arc sin(√3/2) = 60°.
2) Находим ВС как гипотенузу:
ВС = √(20²+15²) = √(400+225) = √625 = 25.
Высота АД = 2S/BC,
S = (1/2)20*15 = 10*15,
AD = (2*10*15)/25 = 12.
∠ADO = arc sin (AO/AD) = arcsin(6/12) = arc sin(1/2) = 30°.
3) Угол АВС находим по теореме косинусов.
cos(ABC) = (AB²+DC²-AC²)/(2*AB*BC) =
= (4²+6²-28)/(2*4*6) = 24/48 = 1/2.
∠ABC = arc sin (1/2) = 60°.
Ответ:
Та же проблема, не могу решитьпр
Объяснение:
Второй угол этого треугольника равен 90-32= 58
плоскость альфа параллельна плоскости бета. Через произвольную точку В плоскости бета проведем прямую b параллельную прямой a. так как прямая a пересекает плоскость альфа, то прямая b пересекает плоскость бета. Следовательно, прямая b пересекает плоскость бета (где прямая a не лежит на ней). Поэтому прямая альфа также пересекает плоскость бета.