Решение:
треугольник AOB = тругольнику COD (по 1-ому признаку равенства трегольников)
AO=OC, BO=OD (по условию)
следовательно AB=CD угол 1= углу 2
Так как углы при вершинах правильного многоугольника равны, величину внутреннего угла можно найти разными способами.
1) Из формулы <em>N=180•(n-2)/2,</em> где <em>n</em> - количество сторон (углов) многоугольника, <em>N</em>- сумма внутренних углов.
2) Из суммы внешних углов многоугольника. Она равна 360°⇒
внутренний угол=<em>(180°)-360°</em><em>:</em><em>n</em>, так как сумма внешнего и внутреннего углов равна 180°
3). Вокруг правильного многоугольника можно описать окружность, и радиусы, соединяющие центр окружности с вершинами многоугольника делят его на равные треугольники. Сумма двух соседних углов при основании таких треугольников и будет величиной угла многоугольника. Т.е. из суммы углов треугольника нужно вычесть величину центрального угла двадцатиугольника.
(см. вложение)
По теореме косинусов найдем угол при основании параллелограмма
2ab*cosα = a²+b²-d²
2*13*14*cosα = 13²+14²-15²
cosα = (169+196-225)/364 = 140/364 = 5/13
sinα = √1-cos²α = √(13²-5²)/13² = 12/13
Высота h = a*sinα = 13*12/13 = 12 cм
Ответ: наименьшая высота параллелограмма 12 см
PS В предыдущем решении S - площадь тр-ка, а не параллелограмма