Пусть сторона основания равна 2а. Половина стороны а, боковое ребро 10 и апофема d образуют прямоугольный треугольник, тогда по теореме Пифагора d=sqrt(100 - a^2)
Sбок = (Pd)/2, где Р - периметр основания. Значит: 6a*sqrt(100 - a^2)/2 = 144,
3a*sqrt(100-a^2) = 144, a*sqrt(100-a^2)=48, a^2(100 - a^2) = 2304,
a^4 - 100a^2+2304=0 , a^2= 64 или 36, т.е. a=8 или 6. Тогда сторона основания равна
2a=16 или 12. Соответственно, апофема равна sqrt(100-64)=6 или sqrt(100-36)=8
Ответ: 16 и 6 или 12 и 8
По теореме Пифагора можно найти вторую сторону, она будет равна 8 корней из 2; площадь будет равна 32 корня из 2
<span>1) треугольники образовнные частями сторон и отрезками их соедниняющими равны по 1 признаку, т.к. в правильном стороны равны (следовательно и их половинки тоже) и все углы равны => тр-ки равны по 2 сторонам и углу между ними => в шестиугольнике, состоящем из оснований этих тре-ков все стороны равны (т.к. они являются основаниями маленьких треугольников)</span>
<span>2) любой из углов полученного шестиугольника с равными сторонами равен 180-2х (где х - угол при основании маленького треугольника)</span>
<span>Т.к. в шестиугольнике все стороны и углы равны, то он правильный</span>