КЛ=НМ, КЕ=НЕ, угол AED равен углу BEC(КН||ЛМ секущие ЕЛ, МЕ) значит треуг.ЕМН=ЕЛК.
В параллелограмме противоположеные углы равны. Значит, угол Н=Л, а угол К=М. В треугольнике EКЛ угол К равен углу М тр-ка ЕНМ. Треугольник EМЛ- равнобедренный в нем угол М=Л. ЕЛК+ЕЛМ=ЕМН+ЕМЛ. Следовательно, в прямоугольнике КЛМН, угол Л=М, по признаку парал-ма противоположенные углы равны, угол Л=Н,К=М, а К=Л=М=Н=90* , следовательно это прямоугольник.
Πr^2/2, где r - образующая конуса
Проведем высоту AH к стороне BC в ΔABC
Соединим точки D и H
Т.к. AH ⊥ BC, а DA ⊥ AH (DA ⊥ ABC, а следовательно и любой прямой в этой плоскости) ⇒ DH ⊥ BC (по теореме о трех перпендикулярах).
Т.е DH и будет расстоянием от точки D до прямой BC.
Найдем площадь треугольника ABC по формуле Герона:
Площадь ΔABC может быть найдена и по формуле:
Из прямоугольного ΔDAH по теореме Пифагора:
R=18 т.к в окружности есть два радиуса то если касательная с радиусами это треугольник а в треугольнике сумма углов = 180 градусов ,а радиусы всегда равны то 180-60=120делим на два =60 градусов отсюда следует что треугольник равносторонний то радиус =18