ΔABC
AC - основание
AB=BC, т.к. ΔABC - равнобедренный
AD.CN-биссектрисы
Решение:
S=1/2AD·BC
S=1/2CN·AB, а т.к стороны в треугольнике равно => и высоты равны.
Через две пересекающиеся прямые АВ и АА₁ можно провести плоскость (назовем ее β), которая имеет с плоскостью α общую точку А₁, а значит и прямую пересечения.
ВВ₁║АА₁ и В∈β, значит ВВ₁⊂β,
аналогично, СС₁⊂β.
Тогда точки А₁, В₁, С₁ лежат на одной прямой - прямой пересечения плоскостей.
Плоский четырехугольник АА₁В₁В - трапеция с основаниями АА₁ и ВВ₁.
С - середина АВ и СС₁║АА₁, ⇒ СС₁ - средняя линия трапеции (по признаку).
СС₁ = (АА₁ + ВВ₁)/2 = (12 + 6)/2 = 9 см
25) Треугольники АВС и DВЕ подобные, коэффициент подобия равен АВ/ВD=4, все стороны треугольника АВС будут больше соответственных сторон треугольника DВС в 4 раза.
Построим высоту ВМ в треугольнике АВС, соответственно ВК будет высотой в треугольнике DВС.
Допустим, что ВК=х, DЕ=у, тогда АС=4х, ВМ=4у.
Определим площадь треугольников DВЕ и АВС.
S1 - площадь треугольника DВЕ,
S2 - площадь треугольника АВС.
S1=0,5ВК·DЕ=0,5ху,
S2=0,5ВМ·АС=0,5·4х·4у=8ху.
Обозначим площадь трапеции АDЕС - S3=60.
S2-S1=S3,
8ху-0,5ху=60,
7,5ху=60,
ху=8.
S2=8·8=64 (кв. ед.)
Ответ: 64 кв. ед.
29) По свойству биссектрисы треугольника имеем:
ВD:СD=АВ:АС,
9:15=х:18,
х=9·18:15=10,8.
Ответ: 10,8 (л. ед)
Ответ: 10,8 л.ед.
30) По свойству биссектрисы треугольника
LM:LR=MN:NR,
y:x=14:10.5;
x=0,75y.
x+y=20;
0,75y+y=20;
1,75y=20;
y=80/7.
x=20-(80/7)=60/7.
Ответ: 60/7; 80/7.
31) Треугольник ВСD равнобедренный (два угла равные). ВD=ВС=8.
ВD- биссектриса, по свойству биссектрисы
СD:АD=ВС:АВ;
х:10=8:15;х=80/15=5(3).
Ответ: 5,(3)
На картинке показано как будет выглядеть сечение