Ответ:Углом между прямой и плоскостью является угол между прямой и её проекцией на эту плоскость. Из точки В восстановим перпендикуляр к плоскости альфа ВЕ, соединим Е и Д. Отрезок ЕД это проекция ВД на плоскость альфа. По условию треугольник правильный, то есть равносторонний, тогда ВД=а*(корень из3)/2. Гда а сторона треугольника. По условию угол ЕДВ=30. Отсюда перпендикуляр ЕВ=ВД*sinЕДВ=а*(корень из 3)/2*1/2=а*(корень из 3)/4. Отрезок АЕ это проекция АВ на плоскость альфа. Тогда искомый синус равен sinЕАВ=ЕВ/АВ=((а*корень из3)/4):а=(корень из 3)/4.
re
Объяснение:
Решение без синусов косинусов.
При данных условиях диагональ совместно с двумя сторонами параллелограмма образует равносторонний треугольник, который и надо раскручивать.
Точка О на рисунке лишняя.
50:2+16:2=25+8=33cm середины отрезков сложить
Точка А расположена между точками В и С