1) пусть меньший угол равен х, больший угол равен 5х.
х+5х=90,
6х=90, х=15°, ∠ОАD=15°, ∠ОАВ=5·15=75°.
По условию АС=6 см, тогда ОА=ОВ=ОС=ОD=3 см.
ΔАОВ. ∠АОВ=30°. По теореме косинусов АВ²=АО²+ВО²-2·АО·ВО·соs30°,
АВ²=9+9-2·3·3·√3/2=18-9√3≈2,41,
АВ≈1,55 см.
ΔАОD. АD²=АО²+DО²-2·АО·DО·соs150°=18+9√3≈33,59.
АD≈5,8 см.
Площадь АВСD равна АВ·АD=1,55·5,8≈9 см².
3) ВD⊥АD, АВ=2√2, ВС=2√3, ∠ВАС=60°.
ΔАВD. ∠АВD=90-60=30°.АD=АВ/2=√2.
ВD²=(2√2)²-(√2)²=8-2=6; ВD=√6.
ΔВСD.соsВСD=ВD/ВС=√6/2√3=√2/2; ∠СВD=45°; ∠ВСD=45°.
∠АВС=30°+45°=75°.
СD=ВD=∠6.
АС=АD+СD=√2+√6≈1,41+2,45=3,86 см.
40 градусов т.к. дуга АВ равна 200 градусов, угол АМВ 100 градусов, и треугольник р\б то есть углы при основании равны 80 градусов(по 40)
Треугольники подобны по двум углам. Найдем боковую сторону первого треугольника (пусть он будет ABC с основанием AC и высотой BH). Так как треугольник равнобедренный, высота является медианой, значит АН=НС=15. По теореме пифагора найдем ВС=
=17. Отсюда следует, что коэфициент подобия этих треугольников равен 34/17=2. Найдем основание второго треугольника 30*2=60. Отсюда периметр второго треугольника 34+34+60=128см.
Находим объем куба, тоесть 1,3*1,3*1,3 = 2,197 - это объем в метрах кубических, а в 1 куб.метре 1000 литров, следовательно 2,197*1000 = 2197 литров