По теореме косинусов: АС² = АВ² + ВС² - 2 АВ ВС cos 150 = 4² + 9² - 2·4·9·(-√3/2) = 16+81 +36√3 = 97 + 36√3
АС = √(97 +36√3)
Ответ:
Объяснение:
Найдем катеты наклонной АС: один катет 1 , второй катет 4.
АС=√ (1²+4²)=√( 16+1)=√ 17.≈4,1.
АВ=√ (2²+4²)=√( 4+16)=√ 20.≈4,5.
СВ=√ (2²+3²)=√ (4+9)=√ 13.≈3,6.
Ответ:
Объяснение:
Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.
Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN - подобны по признаку равенства углов (см. подобие треугольников). Угол В - общий, а, поскольку CA и NO являются перпендикулярами к CB - то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали).
Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О - точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.
Откуда ON = CA / 2 = 9 / 2 = 4,5
Расстояние же KN найдем по теореме Пифагора.
KN = √(4,52 + 62 ) = 7,5 см
Аналогично, найдем расстояние до второго катета:
OM = CB / 2 = 12 / 2 = 6
KN = √( 62 + 62 ) = √72 = 6√2 см
Ответ: 7,5 см, 6√2 см
Из каждой вершины можно провести 5 диагоналей, одна из которых диаметр, остальные 4 попарно равны - две из них из каждой вершины самые короткие, итого 8 штук, если не учитывать повторяющиеся.8/8=1 - это длина этой диагонали, которая соединяет те вершины восьмиугольника, которые находятся через одну друг от друга. Вершин этих 4. Если соединить - квадрат получается.Площадь квадрата со стороной 1 равна: S=a*b=1*1=1Площадь равна 1.
А сторона квадрата равна 8/8=1
Тридцать градусов. Согласно теореме(<span>Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы)</span>