<span><span>ПустьABCD – данный параллелограмм, AC и BD – его диагонали и (AC) (BD). Пусть O – точка пересечения диагоналей параллелограмма. Треугольник ABC – равнобедренный с основанием AC. Действительно, так как диагонали параллелограмма в точке пересечения делятся пополам, то AO = OC, и тогда BO – медиана треугольника ABC, проведенная к стороне AC. Но по условию (BO) (AC) и [BO] – высота треугольника ABC. Тогда ABC – равнобедренный треугольник с основанием AC. Отсюда – AB = BC. По свойству равенства противоположных сторон параллелограмма следует, что AB = BC = CD = AD. Таким образом, данный параллелограмм – ромб. Теорема доказана.</span></span>
Если высота =12,то и боковые стороны равны 12.т.е. 12+12+7+18=49 площадь трапепции
Ответ:
S = 2400 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 50²= Х² +(Х-10)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 5±√(25+1200) = 40см.
Тогда половина меньшей диагонали равна 40-10 = 30см и площадь одного треугольника равна (1/2)*30*40 = 600см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*600 = 2400см²
<u>Решение:</u>
1) Угол DFE + угол EFC = 180 градусов, тогда угол EFC = 110 градусов (смежные)
2) Рассмотрим треугольник FEC
По теореме о сумме углов треугольника (она равна 180 градусов), угол CEF = 180 градусов - 20 градусов - 110 градусов = 50 градусов
3) Угол АЕВ = 180 градусов - угол CEF = 180 градусов - 50 градусов = 130 градусов (смежные)
4) Рассмотрим треугольник АЕВ
По теореме о сумме углов треугольника (она равно 180 градусов), угол А = 180 градусов - угол В - угол AEB = 180 градусов - 30 градусов - 130 градусов = 20 градусов
<u>Ответ:</u> угол А = 20 градусов.