Большое основание равно 10+5+5 (если рассматривать углы в 30 градусов) = 20 см.
По теореме Птолемея: ,,Если четырёхугольник вписан в окружность, то сумма его противолежащих углов равна 180 градусам" - угол А+угол С = 180. Угол С = 180-46=134 градуса.
Ответ: 134
1) проведем высоту CE
2) 14-4=10
10:2=5 (ED=5)
3) треугол. CED - прямоугольный; ищем CE: 13²=CD²+5²
CD²=169-25
CD=12
4) теперь, ищем AC: AC²=12²+9² (почему 9: AD-ED=9)
AC²=144+81=225
AC=15
Дано: AB=BC=CD=AD (ABCD _ромб) , ∠A =30° ;
∠SEO =∠SFO=∠SMO=∠SNO = α =60°,SO=3√3.
E∈[AB] , F∈[BC] , M ∈[AB] ,N ∈[CD] .
-------
V -?
V =(1/3)*Sосн *H =(1/3)*Sосн *3√3 = √3*Sосн.
Пусть основания высоты пирамиды точка O:
* * * SO⊥ (ABCD), O ∈ (ABCD). * * *
<span>Если все двугранные углы при ребрах основания составляют равные
углы (как в данном примере </span>α=60°) ,то высота пирамиды проходит через центр окружности <span>вписанной в основании (здесь ромб ).
</span>[[ Прямоугольные треугольники SEO , SFO,SMO и SNO равны по общим катетом SO и острым углам ∠SEO =∠SFO=∠SMO=∠SNO.
⇒EO =FO=MO=NO =r и SE ,SF, SM, SN равные апофемы .]]
EF⊥ AD ; MN ⊥BC<span>
* * *
Рассмотрим </span>ΔESF: треугольник равносторонний ∠SEO =∠SFO=60°.
SO =(a*√3)/2= (EF*√3)/2.
3√3 =(EF*√3)/2⇒ EF = 6 . Проведем BH ⊥AD.Ясно BH =EF =6.
Из ΔABH: BH =AB/2 (катет против угла ∠A =30°) ⇒<span>AB=2BH.
</span>Sосн =AD*BH =AB*BH =2BH*BH =2BH² =2*6² =72<span>.
</span>* * * или Sосн =AB*AD*sin∠A =AB²*<span>sin∠A * * *</span>
V =√3*Sосн =72√3.