Пусть ребра единичные.
найдем высоту пирамиды .
два противоположных боковых ребра по единице - диагональ основания √2 - высота √2/2
Пусть А-начало координат .
Ось X - AB
Ось Y - AD
Ось Z - вверх в сторону S
Вектора
SK (0;-0.5;-√2/2) длина √(1/4+2/4)=√3/2
AC (1;1;0) длина √2
косинус искомого угла
| SK*AC | / | SK | / | AC | = 0.5 / (√2/2) / (√2)= 1/2
угол 60 градусов.
Треугольники с радиусами окружностей подобны, отсюда пропорция:
8 / 6 = 6 / х х = 36 / 8 = 9 / 2 = 4,5
Объяснение:
Четырехугольник можно вписать в окружность, если сумма его противоположных углов равна 180°
<А+<С=90+20=110
<В+<Д=90+160=250
=> окружность описать нельзя
Ответ:
3√5 см; 6√5 см.
Объяснение:
Дано: ΔАВС - прямоугольный, ВН - высота, АН=3 см, СН=12 см. Найти АВ и ВС.
ВН=√(АН*СН)=√(3*12)=√36=6 см.
По теореме Пифагора
АВ=√(АН²+ВН²)=√(9+36)=√45=3√5 см
ВС=√(ВН²+СН²)=√(36+144)=√180=6√5 см.