ΔAEC и ΔBED подобные по трем ровным углам.
⇒ EA : EB = AC : BD ⇒ EA : (EA + 28) = 2,4 : 12 ⇒
12·EA = 2,4·EA + 2,4·28 ⇒ EA = 7 ⇒ EB = 35
DE = √( IEBI² +IBDI²) = √(35² + 12²) = 37
DE = 37
Угол АDЕ=угол DAB=130° как накрест лежащие при секущей DA и CE||BF
AC- бис. значит угол BAC=угол CAD =130° : 2=65°
угол BAC = угол DCA = 65° как накрест лежащие при секущей CA и CE||BF
Ответ:65°
Р = 17+17+24+40 = 98
высота = 480*2 и : на 24+40 = 15
высота = 15
боковые сторона трапеции находип по теореме пифагора = 17
Все, что надо сделать - сосчитать ПЛОЩАДЬ треугольника. Возьмите формулу Герона и сосчитайте. Но чтобы ответ соответствовал "правилам" сайта, я предлагаю такой способ :)
Я беру прямоугольный треугольник со сторонами 18, 24, 30 (это "египетский" треугольник, то есть подобный известному треугольнику со сторонами 3,4,5)
От вершины прямого угла вдоль катета длины 18 я откладываю отрезок длины 10 и соединяю со вторым концом другого катета. Получился еще одни прямоугольный треугольник с катетами 10 и 24. Легко найти, что гипотенуза этого треугольника равна 26 (это Пифагорова тройка 10, 24, 26)
Если теперь посмотреть, что осталось от первоначального треугольника, если от него отрезать второй, то как раз получился треугольник со сторонами 26,18 - 10 = 8, 30. То есть - заданный в задаче.
Итак, в заданном треугольнике высота к стороне 8 равна 24. :)
Отсюда площадь равна S = 8*24/2 = 96;
ПОЛУпериметр p = (8 + 26 + 30)/2 = 32;
Радиус вписанной окружности r = S/p = 3;
Могу сказать по рисунку что угол R=30 градусов.