По теореме синусов:
√98/Sin45°=7/Sina
(Sin45°=√2/2);
Sina/√2/2=7/√98
Sina=7/√98 * √2/2=7/2 * √1/49=0,5;
a=30°;
третий угол равен: 180-(45+30)=105°
ответ: 30; 105
Объяснение:
во первых, эти два треугольника подобны, так как два их угла равны А=А1 и С=С1 и отношение их сторон равны некому К, что является коэффициентом подобия. Распишем же друзья это и выясним, чему же равны стороны двух загадочных но подобных треугольников АВС и А1В1С1! Запишем отношения: АС/А1С1=СВ/С1В1=АВ/А1В1 и подставим длины этих сторон: АС/8=7/С1В1=5/10=1/2 то есть 0,5 это наш коэфициент подобия! теперь все будет ясно) подставляем АС/8=1/2 АС=4 см. 7/С1В1=1/2 С1В1=14 см.
Розглянемо ΔАВС кут АВС дорівнює 120, кут ВАС дорівнює 60, тоді кут ВСА = 180 (120 + 30) = 30. виходить ΔАВС рівнобедрений, де АВ = ВС = 12. Так як трапеція рівнобедрена, то СД = АВ = 12. тепер проведемо з точок В і С виступила до АТ розглянемо ΔСоД. кут СОД = 90 °, тоді СД гіпотенуза, кут Д дорівнює 60 за умовою, кут С = 180 (90 + 60) = 30. тоді ОД = 12: 2 = 6, так як катет лежить навпроти кута в 30 ° дорівнює половині гіпотенузи, тоді ОД = АЕ = 6. отже АТ = АЕ + ЕО + ОД = 6 + 12 + 6 = 24. тоді Р = АВ + ВС + СД + ДА = 12 + 12 + 12 + 24 = 60. відповідь Р = 60
Ответ Д - 54°
Находим 1 угол 180-116=64°
сумма углов любого треугольника=180°
х+(х+8)+64=180
2х=108
х=54°
х+8=62°
меньший -54°