1,а)точки А, В, С, N, М.
1,б) плоскость (А, К, М)
1,в)прямая АС.
2) через три точки можно провести лишь одну плоскость. Верно.
3) Данные точки должны лежать на одной прямой.
Через две точки можно провести единственную прямую. Значит сторона ВС лежит в плоскости α. Средняя линия треугольника соединяет середины двух сторон и параллельна третьей стороне треугольника. Следовательно, средние линии треугольника АВС:
EF параллельна плоскости α, а
EG и FG - пересекают ее в точке G.
Вроде получается а, там через прямоугольные треугольники
Расстояние от точки до прямой - перпендикуляр.
a) Опустим перпендикуляр AH на прямую BM. В прямоугольном треугольнике AMH острый угол равен 30°. Катет против угла 30° равен половине гипотенузы, AH=AM/2=6/2=3 (см)
б) Опустим перпендикуляр AH на прямую BM. △BAM - равнобедренный, высота AH является медианой. Медиана из прямого угла равна половине гипотенузы, AH=BM/2=7/2=3,5 (см)
в) В данном случае перпендикуляр уже проведен, треугольник ABM - равнобедренный (AB=AM, радиусы), медиана AC является высотой. В прямоугольном треугольнике ABC острый угол равен 30°. Катет против угла 30° равен половине гипотенузы, AC=AB/2=6/2=3 (см) (исходим из того, что 6 см - радиус)
-----------------------------------------------------------------------------------------------------------------
Расстояние от точки до прямой на плоскости равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой.