∠BAC=∠2 как вертикальные
∠BAC=∠BCA как углы при основании равнобедренного треугольника (АВ=ВС)
∠1=180°-∠BCA=180°-∠BAC=180°-∠2=152°
Из подобия треугольников
Х/1,7=8,5/0,85
Х=17 м
Прошу прошения, вчера не видела вашего сообщения.Решение во вложении:
1. рассмотрим треугольник АВС - равнобедренный, значит, углы ВАС и ВСА равны.
2. т. к. ABCD - трапеция, то ВС параллельно АD, углы ВСА и САD равны как накрест лежащие для параллельных прямых ВС и АD и секущей АС.
3. значит, углы ВАС и ВСА и САD равны.
4. т. к. ABCD - равнобедренная трапеция, то углы при основаниях равны, т. е. углы ВАD и СDA равны.
5. т. к. углы ВАС и ВСА и САD равны, углы ВАD и СDA равны, то угол СDA=2угла САD.
6. т. к. сумма градусных мер острых углов прямоугольного треугольника равна 90°, а угол СDA=2угла САD, то угол САD=30°, угол СDA=60°.
7. угол СDA = углу ВАD = 60°
8. т. к. ABCD - равнобедренная трапеция, то углы при основаниях равны, т. е. углы СВА и BCD равны.
9. сумма градусных мер углов трапеции равна 360°, углы СВА и BCD равны, угол СDA = углу ВАD = 60°, значит угол СВА = углу BCD = (360°-120°):2=120°
Ответ: 60°, 60°, 120°, 120°.
Найдём сначала угол coe, он равен 90-угол eob и равен 60^0
Затем найдём угол doc он равен 90^0:2 тк углы aod и doc равны по условию то угол doc равен 45^0
Итак угол doe равен сумме углов coe и doc и равен 60+45=105^0-ответ