У равнобедренного ∆ две стороны равны, если мы одну из таких сторон приравняли к 7, то неизвестная сторона =
18-7×2=4 см
если мы основание приравняли к 7, то
(18-7)÷2=5,5 см
таким образом задача имеет 2 способа решения
Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.
x = (180 - 60)/2 = 120/2 = 60
Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:
AB = √(OB^2 - AO^2)
AB = √(4^2 - 2^2)
AB = √(16 - 4)
AB = √(12)
AB = √(4 * 3)
AB = 2√3
Если К-середина ВС,а Р-середина AD, то точке D симметрична точкаА. Если К-середина АВ, а Р- середина CD, то точке D симметрична точкаС
Две точки А и А' плоскости называются симметричными относительно прямой
с, если эта прямая проходит через середину отрезка АА' и перпендикулярна
к нему. Каждая точка прямой c считается симметричной самой себе.
Соответствие,
при котором каждой точке А сопоставляется симметричная ей относительно
прямой с точка А', называется осевой симметрией. Прямая с называется
осью симметрии.
Две фигуры F и F' называются симметричными
относительно оси с, если каждой точке одной фигуры соответствует
симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление
об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба
будет осью симметрии, а каждая точка листа совместится с симметричной
точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др.
Задача1
1) по т Пифагора АС=√(16+12) = √28 = 2√7
2) по опр косинуса угла ,сos C = 4 /2 √7 = 2 /√7 = 2√7 / 7
уг С ≈ 40*
Задача 2
1) по т косинусов найдем косинус угла, леж напротив стороны 7 см
49 = 25+64 - 80 cos α
8 0cosα = 25+64-49
80 cos α = 40
cosα = 1/2
уг α=60*