№2:
Так как a||b, то углы ABC и CDE равны (свойство секущей и двух параллельных прямых), ⇒, угол CDE=70.
Так как угол ACD=115, а угол АСЕ=180(прямой), то угол DCE=ACE-ACD=180-115=65.
Так как в треугольнике 180 градусов, то угол CED=180-65-70=45.
Треугольники АВС и СDE равны, ⇒, угол ВАС=45, угол АСВ=65
№4:
В треугольнике АВС: угол АВС=40, а АСВ=90,⇒, ВАС=180-90-40=50.
В треугольнике ВCD: DBC=40, BDC=90,⇒, DCB=180-90-40=50
В треугольнике ADC: ADC=90, DAC=50,⇒,ACD=180-90-50=40
№3:
В треугольнике КМР прямая МН делит угол М пополам,⇒, углы КМН и РМН равны = 75.
Так как угол МНР=15, а угол КНР=180(прямой), то КНМ=180-15=165.
Значит, в треугольнике КМН: угол К=180-75-165=-60,⇒, угол МКН - тупой.
В треугольнике МНР: МНР=15, НМР=75,⇒, угол Р=180-75-15=90,⇒, угол МРН-прямой.
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны
1) Основание высоты правильной четырёхугольной пирамиды лежит в точке пересечения диагоналей основания, значит АО=СО.
ДО⊥АС, МО⊥АС ⇒ МДО⊥АС. КО∈МДО ⇒ КО⊥АС.
КО⊥АС и АО=СО, значит ΔКАС равнобедренный.
2) Смотри п.1)
3) АС=d=АВ√2=а√2.
ДО=АС/2=а√2/2.
cos∠МДО=ДО/МД=а√2/(2·а√2)=1/2,
∠МДО=60°.
4)В тр-ке МДО МО=√(МД²-ДО²)=√(2а²-а²/2)=√((4а²-а²)/2)=а√3/√2=а√6/2.
КО=h=ab/c=МО·ДО/МД=а√6·а/(2√2·а√2)=а√6/4.
В тр-ке АКО tg∠АКО=АО/КО=а·4/(√2·а√6)=4/√12=4/2√3=2/√3.
∠АКО=arctg(2/√3).
∠AKC=2∠AKO=2arctg(2/√3) - да, верно.