Задание №
7:
На стороне AB равностороннего треугольника ABC взята точка D
так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту
треугольника, проведенную из вершины C.
РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных
расстояний m, другое – n. Расстояния – это высоты.
Находим площади треугольников:
Теперь их
суммируем:
В левой части
полная площадь ABC, правую можно периписать так:
Где h - высота из вершины C, равна
сумме расстояний = 16 см
ОТВЕТ: <span>16
см</span>
S=ah т.к. ромб это обычный параллелограмм с равными сторонами
сторона равна 9, а высота 5. х*(x+4)=45 x=5 это высота
sin острого угла = 5/9 cos этого же угла равен 2sqrt(14)/9 тогда по теореме косинусов d^2=81+81-2*9*9*2sqrt(14)/9
d^2=162-36sqrt(14)
D=sqrt(4*81-(162-36sqrt(14))=sqrt(324-162+36sqrt(14))=sqrt(162+36sqrt(14))
единственное, что меня смущает это корень под корнем, все ли данные задачи верны и нет ли там угла?
Пожалуйста скажите пожалуйста