пирамида КАВС, К-вершина АВС прямоугольный треугольник , уголС=90, ВС=6, АС=8, АВ=корень(ВС в квадрате+АС в квадрате)=корень(36+64)=10, О-центр описанной окружности лежит на середине АВ, КО-высота пирамиды, АО=ВО=радиус=1/2АВ=10/2=5, проводим медиану СО, в прямоугольном треугольнике медиана, проведенная к гипотенузе=1/2гипотенузы=1/2АВ=радиус=10/2=5, КС=КА=КВ=5*корень5
треугольник КСО прямоугольный, КО=корень(КС в квадрате-СО в квадрате)=корень(125-25)=10 - высота пирамиды
Треугольники PRM и QSN равнобедренные с углом при общих сторонах 60° - а значит правильные. RMSN - квадрат со стороной √2. его диагональ RN=√2*√2=2 дм.
<u><em>Теорема 1.</em></u><em> Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.</em><span> </span>
<u><em>Следствие 1.</em></u><span> Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание. </span>
<u><em>Следствие 2</em></u><span>. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание. </span>
<span>--------</span>
<u><em>Вывод: радиус сферы, вписанной в прямую призму высота которой равна h, равен половине этой высоты.</em></u>
Медиа́на треуго́льника<span> ― отрезок,
соединяющий вершину треугольника с серединой
противоположной стороны.</span>
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на
противоположную сторону.
<span>Перпендикуляр, опущенный из точки A на
прямую a — это отрезок, лежащий на прямой, перпендикулярной прямой a, один
конец которого — точка A, второй — точка пересечения этих двух прямых.</span>