Биссектриса AZ
1. Длины сторон
AB = √((-12-4)²+(-2-10)²) = 20
AC = √((-12+6)²+(-2+10)²) = 10
BC = √((4+6)²+(10+10)²) = 10√5
2. Биссектриса делит пересекаемую сторону на отрезки, пропорциональные прилегающим сторонам
BZ/CZ = AB/AC = 20/10 = 2
BZ = 2*CZ
BZ+CZ = 10√5
3*CZ = 10√5
CZ = 10/3√5
уравнение прямой СB в параметрической форме
x = -6+(4+6)t = -6 + 10t
y = 10
причём при t=0 получаем точку С, при t=1 - точку B
а при t = 1/3 - получим точку Z
x = -6 + 10*1/3 = - 8/3
y = 10
Z(-8/3;10)
и уравнение прямой AZ
(x+8/3)/(-12+8/3) = (y-10)/(-2-10)
или
<span>-3x/28 + y/12 - 47/42 = 0</span>
через площадь треугольника...
S(ABC) = <u>0.5</u>*AC*BD = <u>0.5</u>*BC*AE
10*<u>8</u> = <u>16</u>*AE
AE=5
Ответ : (2d³√3)/(sin²α cosα). Когда построишь перпендикуляр из середины высоты к боковому ребру, получатся два угла с соответственно перпендикулярными сторонами SMK, SAO. Они равны .
1. точки касания/центра/радиусу
2. касктельной
3. лежит в центре окружности/пересекают окружность
4. опираются/дугу
5. 25°/25°
6. они равны
8. его стороны являются касательными к данной окружности
10. серединном перпендикуляре данного отрезка
11. то она равноудалена от двух лучей, составляющих данный угол
12. треугольник