Угол Р - общий; Угол Д = углу М - как соответствующие при параллельных прямых и секущей. Следовательно треугольники МРК и ДРЕ подобны.
периметр МКР/ периметр ДРЕ = МР/ДР = МК/ДЕ = РК/РЕ=к, где к - коэффициент пропорциональности.
РЕ=РК - ЕК = 25-20=5
20/ДР = 35/ДЕ = 25/5 = 5
ДР = 20/5 = 4
ДЕ = 35/5 = 7
<span>периметр Р = 4+5+7 =16</span>
Периметры относятся P1\P2=1,5 ЭТО КОЭФФИЦИЕНТ подобия, значит S1\S2=2,25
Объяснение:
Надеюсь это правильно я посчитала
Т.к. EF || (ADC) ---> они не имеют общих точек,
т.к. прямая (АС) принадлежит плоскости (ADC),
то EF и АС не имеют общих точек... т.е. они могут быть либо параллельными, либо скрещивающимися прямыми...
но EF и АС лежат в одной плоскости, значит они НЕ скрещиваются, они параллельны
РК по построению -- средняя линия треугольника ADC и РК || AC
EF || AC, PK || AC ---> EF || PK
(по теореме: Если две прямые || третьей прямой, то они || )))
РК и АВ --скрещивающиеся прямые: РК лежит в плоскости (ADC),
AB пересекает эту плоскость в точке А, точка А не лежит на РК (она принадлежит прямой, параллельной РК)))
угол между прямыми РК и АВ равен углу между АС и АВ (т.к. РК || AC)
угол ВСА = 180-40-80 = 60 градусов
Ответы:
2. 240°
3. 110°
Решение прилагаю