B трапеции ABCD ( AD || BC) : < A+ < B =180° ⇒ < B =180° - < A , а в равнобедренной трапеции еще и <A = <D , поэтому : < B = 180° - < D =180° -70° =110° .
обозначим боковые стороны треугольника за x
Трапеция АВСД, АВ=СД. уголА=уголД, Вс=15, АД=17, проводим высоты ВН и СК на АД, НВСК - прямоугольник ВС=НК=15, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД=(АД-НК)/2=(17-15)/2=1, треугольник АСД прямоугольный, АС перпендикулярна СД, СК-высота трапеции, АК=АН+НК=1+15=16, СК в квадрате=АК*КД=16*1=16, СК=4, площадьАВСД=1/2*(ВС+АД)*СК=1/2*(15+17)*4=64
2)sin=BC/BK=25/15=5/3
3)площадь ромба равна половине произведений его диагоналей. тогда 7х*х=31.5*2
x^2=9
x=3
7x=21
4)если построить рисунок, то можно заметить, что если продлить этот отрезок, то получиться средняя линия, состоящая из 3- частей. Сумма двух которых равняется малому основанию. Тогда отрезок соеденяющий середины диагоналей равен полусумме оснований минус малое основание, т.е. модуль полуразности оснований. тогда этот отрезок равен (8-5):2=1,5
Получается четере угла(а,в,с,d). Угол а и в- смежные.
Пусть<а=х°, тогда <в=11х°. Сумма смежных углов=180°.
х°+11х°=180°
12х°=180
х=15°-<а.
15•11=165°-<в
Т.к. при образовании двух прямых <а вертикален<с; и <в вертикален <d, то по свойству вертикальных углов( они равны)==> <а=<с=15°;<в=<с=165°.
Ответ:15°,165°, 15°,165°