Треугольники равны потому что две их стороны равны. АВ=CD и сторона AD у них одна на двоих
АВСДА1В1С1Д1 - наклонная призма, АА1С1С - ромб (диагональное сечение), ∠А1АС=60°.
В квадратном основании АС - диагональ, АС=а√2=6√2 см.
В ромбе все стороны равны, значит АА1=АС=6√2 см.
В ромбе АА1С1С опустим высоту А1К на сторону АС. Исходя из условия задачи (АА1С1С⊥АВСД) А1К⊥АВСД, значит А1К - высота призмы.
В тр-ке АА1К А1К=АА1·sin60°=6√2·√3/2=3√6 см.
Объём призмы: V=S·h=a²h=AB²·A1К=36·3√6=108√6 см³.
Ответ зависит уже от угла между плоскостями ABC и AB1C,
Площадь ABC считается легко, Ответ будет равен этой площади, умноженной на косинус угла между плоскостями (он же - угол ВСВ1).
Равносторонний,значит 2R=H
4R²=64
R²=16
R=4
Sосн=πR²=16πсм²