2πr=8√3π, откуда r=4√3,
а₆=2r*tg(180°/3)=2*4√3*1/(√3)=8/cм/
(2)
39°+73°=112°
180°-112°=68°
Пусть A - начало координат
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости ABC
z=0
Координаты точек
K(0;a/2;0)
L(a/3;a;0)
D1(0;a;a)
Направляющий вектор KL (a/3;a/2;0)
длина KL = a√(1/9+1/4)=a√13/6
Направляющий вектор D1K(0; -a/2; -a)
расстояние от D1 до KL - Высота сечения =
|| i j k ||
|| 0 -a/2 -a || /(√13/6) = a √(19/13)
||a/3 a/2 0 ||
Площадь сечения половина основания на высоту
S=a^2 *√19/12
Уравнение плоскости KLD1
mx+ny+pz+q=0
подставляем координаты точек
an/2+q=0
am/3+an+q=0
an+ap+q=0
Пусть n=2 тогда q = -a m= -3 p= -1
-3x+2y-z-a=0
косинус угла между <span>KLD1 и ABC
cos a = 1/1/</span>√(9+4+1)=1/√14
7 умножить на 1 равно 7
7 умножить на 2 равно 14
7 умножить на 3 равно 21
7 умножить на 4 равно 28
7 умножить на 5 равно 35
7 умножить на 6 равно 42
7 умножить на 7 равно 49
7 умножить на 8 равно 56
7 умножить на 9 равно 63
7 умножить на 10 равно 70
<span>Опустить высоту ВН.
В прямоугольном треугольнике АВН
гипотенуза АВ = 13,
катет АН = AD - BC =(9 + R) - (4 + R) = 5
катет AH = 5
катет ВН = 2R и это же высота найдём его по теореме Пифагора
ВН</span>²<span> = (АВ)</span>²<span> – (АН)</span>²
<span>ВН = √(13</span>²<span> - 5</span>²<span>) = </span>√(169 - 25) = √144<span> </span> = 12
Отсюда R = 12 : 2 = 6
ВС = 6 + 4 = 10
AD = 9 + 6 = 15
S = (BC + AD) * BH/2
S = (10 + 15) * 12/2 = 25 * 6 = 150
Ответ S = 150