<span>Двугранный угол - это угол между двумя плоскостями. На этом рисунке двугранный угол между плоскостью АВС и ДАС является как угол С так и угол А</span>
Из большого угла проводим высоту к основанию, получаем прямоугольник и прямоугольный треугольник, находим углы в треугольнике.. основания в трапеции параллельны, поэтому проведенная высота дает прямой угол и к нижнему и к верхнему основания, тогда смотрим на больший угол равный 135, вычитаем из него прямой, получаем 45град, отсюда понимаем, что полученный треугольник прямоугольный равнобедренный, у нас известна гипотенуза, а квадрат гипотенузы, равен сумме квадратов катетов - находим катеты: [latex](5sqrt{2})^{2}=25*2=50 \ 50/2 =25, \ sqrt{25}=5[/latex] (находим квадрат гипотенузы, делим его на 2, и извлекаем корень квадратный, получаем катет) Катет является и высотой, значит высота равна 5см, а длина прямоугольника равна 12-5=7см Находим площадь трапеции: -площадь прямоугольника=7*5=35 -площадь треульника=(5*5)/2=12.5 площадь трапеции=35+12.5=47,5см
1) Если 147+33=180 градусов(односторонние ) то прямые параллельны
2) угол 2 =31; угол 1=149
3)x=35
4) y=90; x=45
В прямоугольном треугольнике АВС угол С=90°, угол В=30°, следовательно, угол А=60°. AD - биссектриса, то есть делит угол А на два равных угла по 30°. Рассмотрим треугольник ADC. Угол С прямой, угол DAC равен 30°, так как AD - биссектриса. Катет CD, лежащий напротив угла в 30° равен половине гипотенузы, то есть AD=14 см. Теперь рассмотрим треугольник BAD. Угол В равен 30°, угол BAD равен 30°, так как AD медиана, то есть треугольник равнобедренный, BD=AD=14см. BC=CD+BD=7+14=21см.