Катеты треугольника а и b, гипотенуза с.
Высота делит гипотенузу на отрезки с₁ и с₂.
По условию с₁-с₂=3, с₁=3+с₂
h²=c₁*c₂=(3+c₂)*c₂
4=3c₂+c₂²
D=9+16=25
c₂=(-3+5)/2=1
c₁=4
Гипотенуза с=1+4=5
Катет а²=с₁²+h²=16+4=20, а=2√5
Катет b²=с₂²+h²=1+4=5, b=√5
Радиус вписанной окружности R=(a+b-c)/2=(2√5+√5-5)/2=(3√5-5)/2
Площадь круга S=πR²=π*(3√5-5)²/4=2,5π*(7-3√5)
Находим координаты вектора MN:
MN = {9-2; 0-(-3); -3-12} = {7; 3; -15}
Находим длину вектора MN:
d = √ (7²+3²+(-15)²) = √ ( 49+9+225) = √ (283)
Пусть ABCD - равнобедренная трапеция, E, F, K, L - середины сторон трапеции, тогда EK=15 см - средняя линия трапеции, FL=6 см - высота и O=FL∩EK - точка пересечения диагоналей четырехугольника EFKL.
Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба).
Площадь ромба можно найти по формуле:
S=1/2*d1*d2, где d1 и d2 - диагонали ромба.
S=1/2*6*15=45 (см²).
Ответ: 45 см².