Рисунок сам нарисуешь
угол СВЕ(АВЕ)=углуВЕА -внутренние накрестлежащие. Треугольник ВАЕ-равнобедренный и АВ=АЕ=1 части. ДЕ-3 части. Тогда АД=4части. Пусть 1 часть х:
2*(х+4х)=10
10х=10
х=1, большая сторона АД (ВС) равна 4*1=4
А(2;-1)
х=2; у=-1, подставляем в уравнение
2*2-3*(-1)-7=4+3-7=0
0=0, значит т.А лежит
1. Задача 1. решена пользователем
<span>
ХироХамаки
<span>
Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
</span></span>Основание
АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние
от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол
между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.
Биссектриса прямоугольного треугольника делит гипотенузу на отрезки пропорциональные катетам.
Один катет 3x второй катет 4x. Получаем египетский треугольник, значит гипотенуза 5x. (если в первый раз слышим, то по теореме Пифагора).
5x=7
x=7/5
Значит первый катет равен 5.6 а второй катет 4.2
Осталось найти биссектрису.
Пусть биссектриса равна L, и два наших катетов a и b
Аналогичное решение на фотографии