Треугольник АВС.
KM // AB
Треугольник АВС подобен треугольнику KBM по трем углам, т. к.
AC // KM и AB и ВС - секущие =>
L BAC = L BKM
L BCA = L BMK
а L B - общий для обоих треугольников =>
<span>треугольники подобны по трем углам.</span>
Ответ: 73 градуса.
Объяснение: т.к. трапеция равнобедренная, углы при основаниях трапеции равны, следовательно два угла трапеции по 107 градусов, сумма всех углов любого четырехугольника 360 градусов, получим х = (360-107*2)/2 = 180-107 = 73 (градуса)
или так: сумма углов, прилежащих к боковой стороне трапеции, = 180 градусов - это односторонние углы при параллельных основаниях трапеции и секущей-боковой стороне)
О1, О2, О3 - центры окружностей.
Треугольник О1О2О3 - равносторонний, его сторона равна 2r. Тогда площадь этого треугольника равна (2r)^2*V3 / 4 = r^2*V3
Площадь одного сектора равна pi*r^2 / 6
Таких секторов образовано три. Значит, площадь трех секторов равна pi*r^2 / 2
<span>Тогда площадь фигуры, расположенной вне окружностей и ограниченной их дугами, будет равна разности между площадью треугольника О1О2О3 и площадью трех секторов. А это равно r^2*V3 - pi*r^2 / 2 = 0,5*(2V3 - pi)*r^2</span>
30°+9см АС=39° АВС-АС=39° 39×2=72°
Прямокутник АВСД, діагоналі АС та ВД перетинаються в т. О.
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також <span> в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Нехай ОН=ОМ=Х см, тоді ОК=ОР=Х+5 см (по умові задачі сказано, що
</span><span>точка перетину діагоналей прямокутника лежить на відстані від більшої сторони на 5 см ближче, ніж від меншої).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=Х+Х=2Х см
ВС=АД=ОР+ОК=(</span>Х+5) +(Х+5)=2Х+10 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД=44 см
<span>Отже
2Х+(</span>2Х+10) + 2Х+(2Х+10)=44
<span>8Х+20=44
8Х=24
Х=3 см
Виходить, що
</span>АВ=СД=2Х=2*3=6 см
ВС=АД=2Х+10 =2*3+10=6+10=16 см
<span>
Відповідь: сторони прямокутника </span>АВ=СД=6 см та ВС=АД=16 см<span>
</span>