просто дроби противные, это - ничего страшного... терпение :)))
Продливаем боковые стороны и достраиваем трапецию до равнобедренного треугольника (пусть точка пересечения АВ и CD - E). На чертеже получается ДВА подобных равнобедренных треугольника ABE и ВСЕ.
Пусть АD = a; BE = b; CO/4 = x;
Тогда СО = 4*х; OD = (7/4)*СО = 7*х; CD = 11*x; x = 17/11;
ОD = 119/11; CO = 68/11;
Из подобия ABE и ВСЕ
b/5 = (b + 17)/a;
Поскольку АО - биссектриса ТРЕУГОЛЬНИКА АВЕ, то
(b + 17)/a = (b + CO)/OD;
То есть
b/5 = (b + 68/11)/(119/11);
Отсюда находим
b = 85/16;
a = (b + 17)/(b/5) = 21;
Итак, у трапеции известны все стороны - основания 21 и 5, боковые стороны 17.
Опускаем перпендикуляр из В на AD, получаем прямоугольный треугольник с гипотенузой 17 и одним катетом (21 - 5)/2 = 8;
Отсюда высота трапеции 15 (опять Пифагорова тройка 8,15,17)
Площадь 15*(21 + 5)/2 = 195;
Длина окружности (С) = <span>пD
С = 8*п
S = Ch
h =8, следовательно S = 8*п*8 = 64*п
п примерно равно 3,14. Можно подставить и посчитать, а можно оставить в таком виде.
</span>
Сумма всех углов в трапеции равна 360 градусов.
360-118-35=207 градусов. Удачи)
Из треугольника полученного когда опустили высоту найдём острый угол 180-90-33=57. Теперь найдём тупой угол параллелограмма 180-57=123