Алгебраическая дробь не имеет смысла, когда знаменатель дроби равен нулю.
а) 1/2х
2х=0
х=0
б) (х-1)/(х+3)
х+3=0
х=-3
Выражение не имеет смысла при х=-3
в) (х-5)/(х-5)²
х-5=0
х=5
Выражение не имеет смысла при х=5
г) (х³+8)/(х²-4)= (х³+8)/((х-2)(х+2))
(х-2)(х+2)=0
х-2=0, х+2=0
х=2 х=-2
Выражение не имеет смысла при х=2 и х=-2
д) (х²-2)/(х²+2)
х²+2≠0, т.к. х²+2>0 для любого значения х
Следовательно, выражение имеет смысл при любом х∈(-∞;+∞)
е) 8х/(х(х-1))
х(х-1)=0
х=0, х-1=0
х=1
Выражение не имеет смысла при х=0 и х=1
5х+у=20
2х-у=1
Вычитаем от одного уравнения другое
7х=21
Х=3
y² - 10y + 29 = (y² - 10y + 25) + 4 = (y - 5)² + 4
Наименьшее значение, которое может принимать (y - 5)² равно нулю, значит наименьшее значение всего выражения равно 4 .
Розвязання: Точка А належить параболі, тобто f(1)=5=1+b*1+c=1+b+c.
1) если 8-2x<0 (x>4), то неравенство выполняется для всех допустимых иксов (-x^2+6x-5>=0; x^2-6x+5<=0, 1<=x<=5)
Первый кусок ответа: 4 < x <= 5.
2) если 8-2x>=0 (x<=4), то можно возведением в квадрат перейти к <u>равносильному</u> неравенству
-x^2 + 6x - 5 > 4x^2 - 32x + 64
5x^2 - 38x + 69 < 0
3 < x < 4.6
С учётом ограничений, второй кусок ответа: <span>3 < x <= 4
</span>
Собирая оба куска в один получаем решение неравенства 3 < x <= 5
Целые решения неравенства - это 4 и 5, их произведение 20.