2(m+n)-2(m-n)= 2m+2n-2m+2n =4n
Ответ первый)
Для нахождения площади сегмента круга есть формула, - она дана в приложении, но мы можем вывести её сами, немного порассуждав.
Площадь круга S=πR²
Круг содержит 360° ⇒Площадь сектора круга в 1°=πR²:360
Площадь сектора с центральным углом α будет больше во столько раз, во сколько α больше 1.
Sсект=πR²•α:360°
<em>Площадь сегмента АОС равна площади сектора АОС минус площадь треугольника АОС</em>.
S ∆ AOC=AO•CO•sinα:2=R²•sinα:2 ( по одной из формул площади треугольника)
<u>Вычитаем: </u>
Sсегм. = πR²•α:360° - R²•sinα:2
Выносим за скобки R²1/2
<em> Sсегм=R²•1/2•[(π•α:180°-sinα)]</em>
<em>Sсегм=(36:2)•[π•120°:180°-√3/2]</em>
Sсегм=18•(3,14•120°:180°- √3/2)=18•[(3,14•2/3)-√3/2]
<span> S сегм=18•(</span>2,09- 0,866)= 18•1,224= ≈22,032 см²
Угол 1+ угол 2 =180 Градусов ( развернутый угол )
Всего частей 4 +5 = 9
первая часть =180:9=20 градусов
угол 1=20x4=80 градусов
угол 2=20x5=100 градусов
Рассматриваем в плоскости - АКД (треугольник)- полный конус, АВСД(равнобокая трапеция)-усеченный конус, АВ=СД=15-образующая, КО-высота треугольника=высота полного конуса, МО-высота трапеции = высота усеченного конуса, КО=2МО, ВС и КО пересекаются в точке М,КМ=МО, в треугольнике АКД ВС параллельна АД и делит КО на две равные части, тогда КО-средняя лини треугольника АКД, ВС=1/2АД, ВС-диаметр верхнего основания, ВМ=МС=радиус верхнего основания, АД-диаметр нижнего основания, АО=ОД=радиус нижнего основания, АО=2ВМ, ВМ=1/2АО, боковая поверхность усеченного конуса=пи*(радиус нижнего+радиус верхнего)*образующая=пи*(АО+1/2АО)*АВ, 405пи=пи*(3*АО/2)*15, 3*АО/2=27, АО=18, ВМ=1/2АО=18/2=9, в трапеции АВМО проводим высоту ВН на АД, НВМО-прямоугольник, ВМ=НО=9, АН=АО-НО=18-9=9, треугольник АВН, ВН=корень(АВ в квадрате-АН в квадрате)=корень(225-81)=12 = высота троапеции=высота усеченного конуса=МО, объем=1/3*пи*МО*(АО в квадрате+ВМ в квадрате+АО*ВМ)=1/3*пи*12*(324+81+18*9)=2268пи