Положим что прямая параллельная AC и проходящая через M , пересекает AB и AC в точках N и Y соотвественно , аналогично Z и X точки на BC и AC соотвественно , так же L , W на AC и BC .
Так как прямые па аралелльны , то четырёхугольники LMXA , MNBZ , MWCY параллелограммы .
Значит AL=XM , MY=WC , MX=BN .
Полученные три треугольника подобны между собой , получаем
(LN/MX)^2 = (27/12)
(ZW/MY)^2 = (3/12)
(MZ/LN)^2 = (3/27)
LN/MX=3/2
ZW/MY=1/2
MZ/LN=1/3
Откуда LN+AL = LN+MX = 5MX/2
Из подобия треугольников NML и ANY получаем
(LN/(LN+AL))^2 = 27/(27+S(ALMX) + 12)
Или 9/25 = 27/(39+S(ALMX))
Откуда S(ALMX) = 36
Аналогично и с двумя другими S(MNBZ)=18 , S(MYCW) = 12
Значит
S(ABC) = 27+12+3+36+18+12 = 108
Наверное доказать равенство - АМД и СНЕ?
1)треугольники прямоугольные
2)АМ=РС- как половины равных сторон АВ=ВС
3)угол А=углу С -как углы при основании равнобедренного тр-ка АВС,
Значит АМД=СНЕ - по гипотенузе и острому углу
Средняя линия трапеции равна полусумме оснований ,т.е. ср линия=(2+4)/2=3
Ответ:3
c = a / cos60 = 12/0,5 = 24
********************************
СинусВ-отношение противолежащего катета к гипотенузе => гипотенуза=корень из 17 и АС=4