№1
B=180-130=50
A=180-90-50=40
№2
C=A=180-125=55
B=180-55*2=70
№3
C=180-110=70
B=180-120=60
A=180-70-60=50
Треугольники NAM и NA1A2 подобны с к=3
A1A2/AM=NA1/NA
A1A2/9√6=1/3
A1A2=3√6-это AB/6
KT=KB1/6
из последних 2 равенств следует что ΔA2B2B1 равносторонний (<B1A1C1=<B1A2B2=60)
Значит A2B2=A2B1=A1B1-A1A2=18√6-2√6=15√6
Держи..........................................
У правильного треугольника все стороны равны и каждый из углов равен 60 градусов. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрисс. Обозначим треугольник АВС, проведём биссектриссу угла А - АЕ и биссектриссу угла В - ВД. Они пересекутся в точке О. Биссектриссы правильного треугольника являются его высотами и медианами, значит ОД - медиана и высота и треугольник АОД - прямоугольный, сторона которого АД=1/2АС=17√3/2. Угол ОАД=60:2=30 градусов, а катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. ОД (это радиус вписанной окружности) = 1/2АО. Обозначим ОД - Х, тогда АО=2Х. По теореме Пифагора:
АО²=ОД²+АД² (2Х)²=Х²+(17√3/2)² 4Х²=Х²+867/4 3Х²=867/4 Х²=289/4 Х=17/2=8,5. Значит радиус вписанной окружности =8,5.
Sпол=Sосн+Sбок
Sосн=
Sбок=3S(т.к. 3 стороны)
S=H*a
V=Sосн*H
H=V/Sосн=36/4корень из 3 =
S=
Sбок=3*36/корень из 3 =
Sпол=