Следует отметить, что расстояние от точки А до прямой а равно расстоянию от точки В до прямой а, так как прямая а параллельна АВ (по условию), а расстояние есть перпендикуляр опущенный на прямую. Рассматриваем треугольник образованный стороной ВС (гипотенуза), расстоянием от В до прямой а (катет) и отрезком на прямой а. Этот треугольник прямоугольный. Угол В - 30°, . В прямоугольном треугольнике против угла 30° лежит катет равный половине гипотенузы.
14/2=7 см.
Расстояние от В до а (= от А до а) = 7 см.
<u>Р=(а+b)*2 , по условию первая сторона =х , вторая сторона = х+5 , Р=50 получаем уравнение </u> 1) (х+х+5)*2=50 (2х+5)*2=50 2х+5=50:2 2х+5=25 2х=25-5 2х=20 х=20:2 х=10 (см) - первая сторона 2) 10+5=15 (см) - вторая сторона <em>Ответ: стороны параллелограмма равны 10 см и 15 см. </em>
эти два угла опираются на одну дугу (вродь так это называется, забыл уже :D )
Судя по тому, что точки С и D расположены дальше точек А и В - прямые скрещивающиеся.. В случае пересечения прямых точки на плоскостях либо были бы на одном расстоянии от нас, наблюдателей, либо если С дальше, то В ближе и наоборот.
А вот и более "геометричное" рассуждение:
Если бы прямые пересекались, то они находились бы в одной плоскости. К этой плоскости бы принадлежали и точки А, В, С, D
Убедимся, что это не так, для этого предположим, что прямые пересекаются.
На любой плоскости, пересекающей параллельные плоскости должны образоваться в местах пересечения Параллельные прямые.
Проведем прямые через АС и ВD. Эти прямые не параллельны, значит они не могут принадлежать одной плоскости, пересекающей две данные плоскости (ведь плоскости эти по условию параллельны). Следовательно, предположение не верно, данный прямые не лежат в одной плоскости, значит они скрещивающиеся.
Ура!))