Дано: Δ АВС - прямоугольный, ∠С=90°, ∠А=60°, СД - высота, АВ=18.
Найти ВД.
Решение: ∠СВД=30°, тогда АС=0,5АВ.
АС=0,5*18=9.
Δ АДС - прямоугольный. ∠А=60°, тогда ∠АСД=30°, АД=0,5АС=0,5*9=4,5.
ВД=АВ-АД=18-4,5=13,5 (ед.)
A^2=169-144=25
a=5
a ~ второй катет
S=a×b/2=12×5/2=30
M=kn
kn={20k;6k}
m={p;8}
20k=p
6k=8;k=8/6=4/3
p=20k=20*4/3=80/3
oTBeT p=80/3
<span>Высота равноудалена от вершин треугольника. Потому, что все боковые ребра образуют с высотой одинаковые углы, и поэтому равны по длине. Это вообще касается любого отрезка из данной точки, имеющего заданный угол с перпендикуляром к плоскости, проходящим через эту точку. Иначе говоря, вершина пирамиды проектируется на центр описанной окружности. Причем раз нам задан угол (45 градусов) и высота, то радиус описанной окружности равен высоте, то есть 16.Теперь нам надо сосчитать площадь равнобедренного треугольника с углом 120 градусов, вписанного в окружность радиуса 16.Можно,конечно, сосчитать тупо все длины, а можно сообразить, что вместе с радиусами, проведенными в концы основания треугольник образует ромб, (как бы составленный из 2 равносторонних треугольников, хотя даже это не обязательно - можно просто сказать, что центральные углы сторон получаются по 60 градусов). Поэтому боковые стороны треугольника равны 16, а площадь S = 1/2*(16^2)*sin(120) = 64*корень(3)<span>
</span></span>