Пусть катеты равны3 и 4 см, тогда это египетский треугольник, у которого гип-за равна 5 см.
АВС - тр-ник, СК - высота, АС=4, ВС=3, АК=х, ВК=5-х.
В тр-ке АСК СК^2=16-х^2.
В тр-ке ВСК СК^2=9-(5-х)^2
16-х^2=9-(5-х)^2
16-х^2=9-25+10х-х^2
10х=32
х=3.2
АК=3.2 см.
ВК=5-3.2=1.8 см.
АК-ВК=3.2-1.8=1.4 см, а по условию должно быть 14 см, значит коэффициент подобия: k=14/1.4=10.
Соответственно периметр тр-ка будет равен:
Р=k(a+b+c)=10*(3+4+5)=120 см.
Всё!!
Решение смотри в приложении ниже:
Пусть в четырехугольнике ABCD диагонали AC и BD пересекаются. Известно, что через любые две пересекающиеся прямые можно провести единственную плоскость. Значит, прямые АС и BD лежат в некоторой плоскости а. Значит, все точки этих прямых лежат в а, то есть, точки А,В,С,D лежат в а. Раз все вершины четырехугольника лежат в одной плоскости, значит, он плоский, что и требовалось.
Если бисеетрисса делит на две одинаковые части,то
угол В=60
а сторона ac 6 см