Треугольник АВС, уголС=90, диаметр описанной окружности в прямоугольном треугольнике = гипотенузе АВ, центр описанной окружности О -середина АВ, цент вписанной окружности О1 - лежит на пересечении биссектрис, уголОCО1=7, СО1 - биссектриса, уголАСО1=уголВСО1=уголС/2=90/2=45, уголОСВ=уголВСО1-уголОСО1=45-7=38, ОС - медиана делит АВ пополам, треугольник СОВ равнобедренный, медиана проведенная из прямого угла делит гипотенузу на две равные части и =1/2 гипотенузы, ОВ=СО, уголВ=уголОСВ=38, уголА=90-уголВ=90-38=52, извиняюсь за неточность , почему то подумалось - биссектриса острого угла
Пусть АВ=А1В1=х, ВС=В1С1=у, ВВ1=h, ∠В=∠В1=α.
По условию В1М=х/2, В1N=2у/3, ВК=у/3.
Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4.
S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6.
S2=S(BHK)=S(B1MN)/k²=xy·sinα/24.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3.
Объём пирамиды ВНКВ1MN:
V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72.
Объём призмы АВСА1В1С1:
V2=xyh·sinα/2.
Объём многогранника АСКНА1С1NM:
V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72.
V1:V3=7:29 - это ответ.
∡ 3=360° -(119°+115°)=126 °