У прямоугольника все четыре угла одинаковы по 90°.
Диагонали прямоугольника равны.
Параллелограмм может быть прямоугольником
Дано: <C=<DBC=15°, значит треугольник DBC равнобедренный и DB=DC, а <BDC=150°. Тогда <BDA=30 - так как это внешний угол треугольника BDC и равен сумме двух внутренних, не смежных с ним.
В прямоугольном треугольнике АВD катет АВ лежит против угла 30°, значит гипотенуза ВD=2*АВ, что и требовалось доказать.
б) В треугольнике DBC ВС<(DB+DC) - по теореме о неравенстве треугольника: "Каждая сторона треугольника меньше суммы двух других сторон".
Но DB=DC, тогда ВС<2DB, а DB=2АВ.
Значит ВС<4АВ, что и требовалось доказать.
Верные утверждения: 1,3 и 5
площадь пареллелограма определяется по формуле
s=a*h
тогда
s=21*15
s=315
Пусть размер зала a*a метров
существуют два разных размещения ковров - параллельное и перпендикулярное, при параллельном стороны длиной 10 метров параллельны, при перпендикулярном... Ну, вы сами поняли :)
при параллельном площадь перекрытой части ковров
S₁ = (a-14)(a-20) = 16 м²
(a-14)(a-20) = 16
a² - 34a + 280 = 16
a² - 34a + 264 = 0
a₁ = (34 - √(34²-4*264))/2 = (34-√100)/2 = (34-10)/2 = 24/2 = 12 м
Это хорошее решение
a₂ = (34+√100)/2 = 44/2 = 22 м
А вот это уже плохо - размер зала не даёт коврам перекрыться и по нашей формуле получается площадь прямоугольника между углами ковров. Отбрасываем.
----------------------
Теперь перпендикулярное размещение.
ПЕрекрытие ковров имеет квадратную форму
S₂ = (a-17)*(a-17) = 16
(a-17)² = 16
a₃-17 = -4
a₃ = 13 м это хорошо
a₄-17 = 4
a₄ = 21 м - снова без перекрытия ковров, отбрасываем.
Ответ:
Размеры зала равны 12х12 или 13х13 метров