Высота BH по совместительству биссектриса⇒ O -точка пересечения биссектрис. Как известно (это можно вывести, например, из теоремы Ван-Обеля), биссектриса в точке пересечения делится другими биссектрисами в отношении "сумма прилежащих сторон делить на противолежащую". Если боковые стороны обозначить через a, основание через b, условие OB:OH приводит к 2a:b=3:1, то есть a:b=3:2. Поскольку наш треугольник интересует нас с точностью до подобия, можно считать, что b=2; a=3. Найдем косинусы углов нашего треугольника: cos A=cos C=AH/AB=1/3; cos C=cos (180-2C)= - cos 2C=-(2cos^2 C-1)= -(2/9-1)=7/9.
Из той же теоремы Ван-Обеля следует, что высота делится точкой пересечения высот в отношении "косинус угла, из которого опущена высота, делить на произведение косинусов двух других углов".
В нашем случае получается (7/9)/((1/3)(1/3))=7
Ответ: 7:1
Прошу прощения, если не все приведенные факты Вам известны. Если они Вас заинтересуют, оформляйте их в виде задач, и я с удовольствием их докажу.
Площадь равнобедренного треугольника равна 1/2 основания на высоту. Пусть высота будет ОА ОА^2=AC^2-OC^2 OA^2=85^2-75^2=7225-5625=1600=40^2 S=b*h*1/2 S=1/2*150*40 <span>S=3000</span>