Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними
В прямоугольнике все углы = по 90 градусов
1) (90 - 20) : 2 = 35(градусов) = угол СВК
2) 35 + 20 = 55(градусов) = угол АВК
Диагонали прямоугольника делят его на 4 равнобедренных треугольника, т.к. в точке пересечения диагонали делятся пополам. Следовательно,
треугольник АОК - равнобедренный.
Угол АКО = углу СВК = 35(градусов) при параллельных прямых ВС и АК и секущей ВК.
Углы при основании равнобедренного треугольника равны. Следовательно, угол КАО = углу АКО = 35 градусов
Угол АОК = 180 - 35 - 35 = 180 - 70 = 110(градусов), т.к. сумма углов треугольника = 180 градусам.
Ответ: угол КАО = углу АКО = 35 градусов; угол АОК = 110 градусов.
---------------------------------------
Схема вершин прямоугольника и точки пересечения
В С
О
А К
Смотрите рисунок во вложении
Поскольку в трапецию можно вписать окружность, то выполняется условие AB+CD=BC+AD или AB+CD=2BC (трапеция равнобедренная). По-этому, если обозначить AP=x и учесть свойство касательной к окружности, имеет место уравнение
Высота трапеции будет равна диаметру 2r данной окружности:
Поскольку AM=MB=FN=HN, то DH=FC=10:2=5 и по теореме Пифагора
Тогда из уравнения
получим, что AB=2x=8, a CD=AB+2DH=8+10=18 и средняя линия трапеции будет равна (AB+CD):2=13.
По свойству параллельных плоскостей: отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
a//b, α//β; T1P1∈a, TP∈b; T1 и T∈α, P1 и P∈β =>
T1P=TP=6,3дм.
Ну либо: Пусть Р1РТТ1 - плоскость ω => ω пересекает α в Т и Т1, β - Р и Р1 => т.к. α//β, то РР1//ТТ1.
РР1//ТТ1, РТ//Р1Т1 (т.к. T1P1∈a, TP∈b, и α//β) => Р1РТТ1 - параллелограмм => TT1=PP1, PT//P1T1 ( по свойству парал-ма) =>
T1P=TP=6,3дм.
R=18 т.к в окружности есть два радиуса то если касательная с радиусами это треугольник а в треугольнике сумма углов = 180 градусов ,а радиусы всегда равны то 180-60=120делим на два =60 градусов отсюда следует что треугольник равносторонний то радиус =18