Паук сворачивает паутину - к дождю.
Овцы просятся в загон -к дождю . )))
Нарисуйте оси координат. Через каждые 2 клеточки пишите 1, 2,3 и т д. отметьте точку А(4;5): на оси Ох найди 4, а на оси Оу 5
АВ-это фонарь.DH-это человек.CH-тень человека.BH-расстояние от человека до фонаря.
Дано: <A=<A1=90°. <B=<B1. BD = B1D1 - биссектрисы.
Дрказать, что ΔАВС=ΔА1В1С1.
Доказательство:
ΔABD=ΔA1B1D1 по гипотенузе и острому углу - третий признак (так как BD=B1D1, a <ABD=<A1B1D1).
ΔDВС=ΔD1В1С1 по стороне и двум прилежащим к ней углам, так как
<DBC=<D1B1C1, DB=D1B1, а <BDC=<B1D1C1 - как смежные углы равных углов (<BDA=<B1D1A1 - углы равных треугольников ABD и A1B1D1).
Итак, ΔABD=ΔA1B1D1 , ΔDВС=ΔD1В1С1 значит
ΔАВС=ΔABD+ΔDВС равен ΔА1В1С1=ΔA1B1D1+ΔD1В1С1, что и требовалось доказать.
В основании правильной пирамиды лежит квадрат.
Пусть Н - середина CD.
ОН - средняя линия ΔACD, значит ОН║AD. ⇒ ОН⊥CD.
ОН - проекция апофемы SH на плоскость основания, значит SH⊥CD по теореме о трех перпендикулярах, ⇒
∠SHO - линейный угол двугранного угла между плоскостью боковой грани и плоскостью основания.
Пусть а - сторона основания, тогда SH = a, OH = a/2.
ΔSOH: ∠SOH = 90°,
cos∠SHO = OH/SH = a/2 / a = 1/2
⇒ ∠SHO = 60°