это ответ <span>https://ru-static.z-dn.net/files/df5/ca1fb29bf4c31576d82283a623de3379.png</span>
а) AD=BC как противолежащие стороны прямоугольника, АМ=СN по условию, углы между ними MAD и NCB также равны, поскольку являются соответствующими при паралельных прямых AD и ВС и секущей MN. Значит треуг MAD=NCB по первому признаку.
б) Достаточно доказать равенство противолежащих сторон. MD=NB вытекает из равенства треуг MAD и NCB (доказано в первом случае). Равенство сторон MB и ND докажем. Для этого рассмотрим треуг. MBD и NDB. MB=ND, BD-общая сторона, углы между этими сторонами также равны, так как угол MDB=MDA+ADB, NDB=NBC+CBD, ADB=CBD-как накрестлежащие при параллельных прямых AD и BC и секущей BD, а углы MDA=NBC из равенства треуг. MAD и NCB. Следовательно, треуг MBD=NDB, значит MB=ND. Четырехуг. MBND-паралелограм.
MK=12*8,8=105,6
NK=5*8.8=44
или
mk=1,(36)
nk=0,56(81)
Теорема: Медиана из прямого угла равна половине гипотенузы.<span>
Сл-но 60:2=30 (см). </span>
Обозначим величину угла при основании равнобедренного треугольника как х. Тогда, угол, лежащий против основания, будет равен 2х.
Поскольку сумма всех углов треугольника равна 180 градусам, то
2x + x + x = 180
4x = 180
x = 45
Таким образом, углы при основании равнобедренного треугольника равны 45 градусов, а угол, лежащий против основания равен 2 * 45 = 90 градусам.
Ответ: 45, 45, 90 градусов