Периметр ромба равен P = 4a, где а - сторона ромба, отсюда а = P/4 = 148/4 = 37.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Обозначим половины диагоналей за b и с. Тогда разность половин диагональ равна 1/2•46 = 23. Составим систему, используя теорему Пифагора:
37² = b² + c²
b - c = 23
1369 = (c + 23)² + c²
b = c + 23
1369 = c² + 46c + 529 + c²
b = c + 23
2c² + 46c - 840 = 0
b = c + 23
c² + 23c - 420 = 0
c1 + c2 = -23
c1•c2 = -420
c1 = -35 - не уд. условию
c2 = 12
с = 12
b = 12 + 23
c = 12
b = 35
Значит, половины диагоналей равны 12 и 35 см.
Длина меньшей диагонали равна 1/2•12 см = 24 см.
Ответ: 24 см.
Плоскость параллеограмма АВСD пересекается с плоскостью альфа по прямой, соединяющей середины сторон АВ и СD.
<span>По условию ВК=МС; ВК|| МС.</span>
<em>Если две стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм</em>.<span>
⇒КМ || ВС
</span><em>Через две параллельный прямые можно провести плоскость, притом только одну.
</em>Так как ВС не лежит в плоскости альфа, то АD, как сторона параллелограмма, равная и параллельная ВС и лежащая в плоскости АВСD, тоже не лежит в плоскости альфа, в противном случае через ВС и АD можно было бы провести плоскость, отличную от плоскости АВСD.<span>
ВС || КМ ⇒ КМ || АD.
</span><span><em>Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то она параллельна этой плоскости.</em> </span>
AD параллельна КМ ⇒ параллельна плоскости <span>α, что и требовалось доказать. </span>
Решение в скане............
Пусть Х градусная мера угла KNP, Тогда 3Х градусная мера угла MNP. По теореме о смежных углах имеем:
Х+3Х=180
4Х=180
Х=180:4
Х=45
Значит 4Х= 4*45=135
<span>Ответ: угол MNP=135 градусов; угол KNP= 45 градусов.</span>