было бы приятно, если бы отметили, как лучший ответ)
<span>sin B = cos (90-B) = cos A = sqrt ( 1 - sin^2 A ) = sqrt ( 1 - (0.8)^2 ) = sqrt ( 0.36 ) = 0.6</span>
Здесь : sqrt - корень, остальное должно быть понятно )
Пусть в треугольнике ABC биссектрисы AD и CE пересекаются в точке O, при этом угол AOC прямой. Сумма углов любого треугольника равна 180 градусам, тогда сумма углов OCA и OAC треугольника AOC равна 90 градусам. Пусть OCA=a, OAC=b, a+b=90. По свойству биссектрисы, угол OCA равен половине угла ACB, тогда ACB=2a. Аналогично, угол OAC равен половине угла BAC, тогда BAC=2b. Следовательно, ACB+BAC=2a+2b=180, то есть, сумма двух углов треугольника ABC равна 180 градусам. Этого быть не может, то есть, мы получили противоречие. Значит, биссектрисы двух углов пересекаться под прямым углом не могут.<span>
</span>