Дано: Трапеция ABCD, AB-меньшее основание, CD-большее основание. AB=15, CD=21, CH=8
Найти: AC
Решение: Т.к трапеция равнобокая, то AH=(21-15)/2=3
По теореме Пифагора можно найти гипотенузу, которая является боковой стороной:
AC
1)16:2=8(2 кв.)
2)8:4=2(см)-длина и ширина
3)16•2=32
Чтобы найти сторону надо сделать из прямоугольника с его диагональю треугольник, получится прямоугольный треугольник. теперь 64.3 это будет катетом треугольника . нарисуем визуально такой же треугольник и с другой стороны треугольника, чтоб получился равносторонний треугольник. теперь находим высоту равностороннего треугольника это будет h=a√3 /2 , где а это гипотенуза треугольника т.е диагональ прямоугольника. получится h=64,3√3 /2 это и будет длинная сторона прямоугольника.
теперь находим другую сторону , на этом же треугольнике. треугольник у нас равносторонний и поэтому сторона у нас будет поделенная на два т.е. d= 64,3/2=32.15 это будет короткая сторона прямоугольника
теперь находим пеример прямоугольника
p=a+b+c+d
р=64,3√3 /2+ 64,3√3 /2+32,15+32,15=94,45√6