Если Cos a=8/10, а гипотенуза АВ=10, имеем:
АС/АВ=8/10, откуда АС=8;
Ответ: катет АС=8;
1/ ABCD ромб, О центр окржности и точка пересечения диагоналей ромба. ОТ - радис вписанной окружности и высота в треугольнике АОВ. По условию АВ=1, угол АВС 30 градусов. => в треугольнике АОВ угол В 15 градусов,
треугольники АОВ и ОТВ подобны => АВ/ОВ=OT/AO=> OT=(AB*AO)/OB=AO/OB=ctg 15
2/
ABCD ромб, О центр окржности и точка пересечения диагоналей ромба. ОТ - радис вписанной окружности и высота в треугольнике АОВ. По условию OT=2, угол АВС 30 градусов. => в треугольнике АОВ угол В 15 градусов,
треугольники АОВ и ОТВ подобны => АВ/ОВ=OT/AO=> AB=OB*OT/AO=OT*tg 15=2tg15
3/ Пусть АВ=с=1, угол АСВ=γ, радиус описанной окружности равен R=abc/(4S)=abc/(4*½ab sinγ)=c/2sinγ=1/(2*½)=1
Опустим в треугольнике АМВ перпендикуляр МТ из точки М ,(Т лежит на АВ)
так как АМ=ВМ МТ- медиана и АТ=ВТ=2 см,
полупериметр АМВ=(2*2корень(6)+4)/2=2(корень(6)+1)
по формуле Герона площадь треугольника АМВ равна: Корень(2(корень(6)+1)*2*2*2(корень(6)-1)=4корень(5)
но лощадь треугольника АМВ равна:0,5*АВ*МТ=2МТ, а значит МТ=2корень(6)
рассмотрим треугольник ВТС - прямоугольный, по теореме Пифагора: СТ=корень(16+4)=2корень(5)
МТ перпендикулярна плоскости квадрата, а значит и перпендикулярна СТ, значит треугольник МСТ-прямоугольный, по тереме Пифагора: МС=корень(20+20)=2корень(10)
Task/26684431
---------------------
см приложение
BK = MC (в равностороннес треугольнике все три медианы равны между собой)
KC = MB, т.к. AM = MB = 1/2AB = 1/2AC
Медианы в равностороннем треугольнике являются ещё высотами, поэтому угол CKB = углу CMB = 90°
Тогда ∆BMC = ∆BKC (по 1 признаку, либо по катета и гипотенузе)