По свойству касательных, проведенных из одной точки ОК=ОР, треугольник ОКР равнобедренный с углом в 60, поэтому равносторонний, поэтому
ТО есть координаты центра
радиус 2.
Поэтому уравнение окружности
То, что МРК - равнобедренный можно доказать только при условии, что треугольник АВК является равнобедреным с основанием АВ и боковыми сторонами АК и ВК
Решение будет таким:
Раз АВ паралельна МР, то
Угол АВК = углу МРК ( соответственные углы)
Угол ВАК = углу РМК ( соответственные углы), а раз угол АВК = углу ВАК ( углы при основании равнобедреного треугольника АВК), то угол МРК = углу РМК и значит МРК - авнобедренный
Сумма односторонних уголов трапеции равна 180, так как OC и OD биссектрисы, то ∠OCD+∠ODC=90, значит, ∠COD=90. Тогда
cos30=(OD/CD)
√3 /2=10/CD
CD=5√3
Из точки С на сторону АD опусти перпендикуляр CH тогда
sin60=(CH/CD)
√3/2=CH/(5√3)
CH=7, 5
S=((CD+AB)*CH)/2=((12+20)*7, 5)/2=16*7, 5=120
Обозначим треугольник АВС. АВ=4, ВС=5. О центр окружности на АС. Соединим точки О и В. Из точки О проведём перпендикуляры (радиусы) ОМ на АВ и ОК на ВС. (ОК на продолжении АВ). Площадь треугольника АВС равна S авс=1/2*АВ*ВС*sin30=1/2*4*5*1/2=5. Площадь этого треугольника равна сумме площадей треугольников АВО и СВО. То есть Sавс=1/2АВ*ОМ+1/2ВС*ОК, или 5=1/2*4*R+1/2*5*R. 5=4,5R. То есть R=10/9.