Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания.
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
<span>Следовательно, угол АВС=180°-30°=150°
</span>Пусть АВ=4см
ВС=4√3 см
<span>АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
</span>косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
<span>СС1=АС: ctg(60°)=(4√7):1/√3
</span>CC1=4√21
Площадь боковой поверхности данной призмы
<span>S=H*P=4√21*2(4+4√3)=<em>
32√21*(1+√3) см²
</em>---<em>
</em>
[email protected]</span>
Ответ:64см периметр параллелограмма.
Объяснение:
Угол ВАМ равен углу МАD тк биссектрисса АМ делит пополам уголBAD.Угол DAM равен углу BMA (накрестлежащие углы), тк AD параллельно ВС и ам секущая по свойству параллелограма.Отсюда следует что угол ВАМ равен углу ВМА.Следовательно треугольник равнобедренный тк углы при основании равны.Тогда ВМ равен АВ и равен 12см.ВС=ВМ+МС=12+8=20.Периметр равен (20+12)*2=64.
1) Раз треугольник правильный, значит каждая его сторона составляет треть периметра, что есть 15см.
2) Радиус описанной окружности вычисляется по формуле R= a*корень(3)/3, где а - сторона правильного треугольника. Следовательно, R = 5*корень(3)
3) Радиус будет равен половине диагонали правильного четырехугольника. Если смотреть на эту диагональ, как на гипотенузу равностороннего прямоугольника, то сторона по т.Пифагора
2*A^2 = C^2. C^2 = (2*5*корень(3))^2 = 300 -> A = 5*корень(6)
Если внешний угол при вершине В=110 градусов, то угол В=180-110=70 градусов.
Треугольник АВС - равнобедренный, т.к. АС=ВС, значит, угол А=углу В=70 градусов.
Сумма углов треугольника 180 градусов, поэтому угол С=180-(70+70)=40 градусов.
Ответ: 40 градусов.
1) AB+BC=AC, т.к. 5+ 7=12
2)AB+AC=BC, т.к. 10,7+6,4=17,1